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Abstract In this paper, we analyze the real-time in-

fection data of COVID-19 epidemic for 21 nations up

to May 18, 2020. For most of these nations, the to-

tal number of infected individuals exhibits a succession

of exponential growth and power-law growth before the

flattening of the curve. In particular, we find a universal√
t growth before they reach saturation. India, Singa-

pore, and Sri Lanka have reached up to linear growth

(I(t) ∼ t), and they are yet to flatten their curves.

Russia and Brazil are still in the power-law (t2) growth

regime. Thus, the polynomials of the I(t) curves pro-

vide valuable information on the stage of the epidemic

evolution. Besides these detailed analyses, we compare

the predictions of an extended SEIR model and a delay

differential equation-based model with the reported in-

fection data and observed good agreement among them,

including the
√
t behaviour.
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1 Introduction

As of May 23, 2020, COVID-19 pandemic has infected

more than 5.3 million of the human population and

caused 0.34 million deaths. The world economy is in

tatters. Therefore, understanding the progression of the

pandemic is extremely crucial. In the present paper, we

analyze the publicly-available national COVID-19 in-

fection data [37] up to May 18, 2020. We observe that

the COVID-19 infection curves for many nations ex-

hibit power-law growth after exponential growth. We

compare the reported data with model predictions and

observe a good agreement among them.

To understand and forecast epidemics, epidemiolo-

gists have made many models [15,4,10]. One of the first

models is called the SIR model, where the variables S

and I describe the numbers of susceptible and infected

individuals, respectively. The third variable R repre-

sents the removed individuals who have either recov-

ered or died. An advanced model, called SEIR model,

includes exposed individuals, E, who are infected but

not yet infectious [4,10].

SARS-CoV-2 is one of the seven human coronaviruses

which have been identified so far. It is the most dan-

gerous among all of these because of its highly infec-

tious nature and its lethality. Asymptomatic carriers,

individuals who do not exhibit any symptoms, have

carried the virus to far off places where it has spread

rapidly [19]. Even symptomatic patients manifest symp-

toms two to three days after turning transmissible. To

stop the spread of the deadly virus, various nations
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have employed lockdowns, mandatory social distancing,

quarantines for the affected, etc.

Despite the difficulties stated above, many models

are able to describe the COVID-19 pandemic data quite

well. Peng et al. [27] constructed a generalized SEIR

model with seven-variables (including quarantined and

death variables) for the epidemic spread in China. Their

predictions are in good agreement with the present data.

López and Rodo [20] formulated an extended version of

this model to analyse the spread of the pandemic in

Spain and Italy. Earlier, Cheynet [7,8] had developed a

code to simulate this model. Hellewell et al. [13] stud-

ied the effects of isolation on controlling the COVID-

19 epidemic. Chinazzi et al. [9] analyzed the effects

of travel restrictions on the spread of COVID-19 in

China and in the world using the global metapopula-

tion disease transmission model. Mandal et al. [23] con-

structed model for devising intervention strategies in

India. Shayak et al. [34] have constructed delay differ-

ential equation (DDE) model for the spread of COVID-

19; this model takes into account the pre-symptomatic

period and predicts a path to the end of the epidemic.

Due to the above complex issues in the epidemic

models of COVID-19, many researchers have consciously

focussed on the data and attempted to extract use-

ful information from them. It has been observed that

the analysis of the pandemic provides important clues

that may be useful for its forecast. In particular, Ziff

and Ziff [39], Komarova and Wodarz [16], Manchein

et al. [22], Blasius [5], Marsland and Mehta [25], Li et

al. [18], Singer [35], Beare and Toda [2], and Cherednik

and Hill [6] analyzed the reported count of total infec-

tions (I(t)) in various nations and observed power-law

growth after the exponential regime. Verma et al. [36]

analyzed the data of 9 nations up to April 7, 2020 and

showed that the I(t) goes through power laws, t3, t2, t

and
√
t, in temporal sequence before flattening out. By

April 7, 2020, China and South Korea had flattened the

I(t) curves, but other nations were either in the expo-

nential regime or in the power-law regime. However, by

May 18, many nations are close to the flattening of their

epidemic curves. Besides the above results, Prakash et

al. [31] reported a linear growth of I(t) after early ex-

ponential growth.

Schüttler et al. [33] analyzed the daily death counts

for various nations and observed that their probability

distributions appear to follow a Gaussian profile. Mars-

land and Mehta [25] observed that the error function

provides best fit to the total count, I(t); this observa-

tion follows from Schüttler et al. [33]’s analysis.

There are epidemic growth models based on pop-

ulation growth [10,38]. COVID-19 spread via asymp-

tomatic carriers leads to a network formation. Hence,

network-based epidemic growth models may be useful

for modelling COVID-19 pandemic. Marathe and Vul-

likanti [24] review computational epidemiology with a

focus on epidemic spread over a network.

In this paper, we analyzed the COVID-19 infec-

tion data up to May 18, 2020 for 21 nations and ob-

served that all the nations are following transition from

exponential to power-law growth in infection counts.

Many of the 21 nations are close to flattening their

curves with several exceptions (for example, Russia).

We also showed that three epidemics—Ebola, COVID-

19, MERS—have similar evolution: exponential growth,

power-law growth, and then flattening of the curve. In

addition, we compared the predictions of an extended

SEIR model [20] and a delay-differential equation model [34]

with the real-time data and observed good agreement

among them.

The structure of the paper is as follows: in Sec. 2

we analyse the COVID-19 data for 21 leading nations

and observe power law growth for them after the ex-

ponential growth. The evolutions of Ebola, MERS, and

COVID-19 are compared in Sec. 3. The predictions of

two models of COVID-19 pandemic are compared with

the observed data in Sections 4 and 5. We conclude in

Sec. 6.

2 Data analysis of COVID-19 epidemic

In this section, we present our results based on a com-

prehensive data analysis of COVID-19 cases for 21 coun-

tries (see Table 1) up to May 18, 2020. The majority of

the countries in our analysis include those with a large

number of COVID-19 cases, including USA, Italy, Ger-

many, China, and India. For a complete study, we also

include countries with a relatively smaller number of

cases such as Sri Lanka and Hong Kong. We used the

real-time data available at worldOmeter [37] and chose

the starting date (see Table 1) as the one from which

the number of infected cases increased rapidly. Corona

Resource Center [14] too is an important repository for

COVID-19 data.

We analyze the evolution of cumulative number of

infected cases, which is denoted by I(t), with time in

days, denoted by t. For all I(t) curves, we compute

the derivatives İ(t) using Python’s gradient function.

These derivatives indicate the daily count of the in-

fected cases. Note that İ(t) exhibit lower fluctuations

than the measured daily counts due to smoothing. In

Fig. 1, we exhibit the plots of I(t) (red curves) and İ(t)

(blue curves) in semi-logy format for all the 21 coun-

tries.

We find that a single function does not describe the

I(t) curves; hence, we compute best-fit curves for dif-
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Fig. 1 (color online) For the COVID-19 epidemic, the semi-logy plots of total infected individuals (I(t)) vs. time (t) (red
curves) for 21 countries. We also plot İ(t) vs. t (blue curves). The dotted curves represent the best-fit curves, which are
exponential or polynomial functions.
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Table 1 The best-fit curves along with their relative errors for the COVID-19 data for 21 countries.. The best-fit curves are
shown in Figs. 1. The start date for the plots of Fig. 1 are listed below the names of the countries.

Country
(Start Date)

Best-fit functions and errors Country
(Start Date)

Best-fit functions and errors

USA
(February 21)

1) 4.6e0.28t (±4.1%)
2) 17e0.24t (±3.5%)
3) 8.5t3 − 970t2 + 67000t − 15 × 105

(±0.46%)
4) 30000t− 1× 106 (±0.44%)
5) 48× 104

√
t− 29× 105 (±0.2%)

Italy
(February 21)

1) 60e0.33t (±3.2%)
2) 0.51t4 − 30t3 + 770t2 − 8500t + 35000

(±1.5%)
3) 7.8t3−760t2 +30000t−38×104 (±0.61%)
4) 3800t− 45000 (±0.61%)
5) 35000

√
t− 87000 (±0.46%)

UK
(February 26)

1) 8.5e0.26t (±8.1%)
2) 16e0.23t (±5.1%)
3) 130t2 − 5200t+ 56000 (±1.7%)
4) 4900t− 14× 104 (±0.56%)
5) 74000

√
t− 43× 104 (±0.51%)

France
(February 24)

1) 5.4e0.46t (±11%)
2) 110e0.18t (±6.5%)
3) 6.9t3 − 360t2 + 4200t+ 40000 (±1.6%)
4) 4900t− 12× 104 (±1.3%)
5) 17000

√
t+ 24000 (±0.44%)

Spain
(February 26)

1) 15e0.33t (±8.1%)
2) 230e0.19t (±3.6%)
3) 27t2 + 5900t− 14× 104 (±0.34%)
4) 4600t− 50000 (±0.64%)
5) 45000

√
t− 12× 104 (±0.39%)

Germany
(February 23)

1) 7.6e0.34t (±11%)
2) 24e0.25t (±2.9%)
3) 22t2 + 4100t− 11× 104 (±1.2%)
4) 2800t− 14000 (±0.58%)
5) 20000

√
t+ 1100 (±0.38%)

Brazil
(March 03)

1) 3.2e0.32t (±11%)
2) 120e0.14t (±3.6%)
3) 150t2 − 12000t+ 25× 104 (±3.2%)

Turkey
(March 12)

1) 0.40e0.93t (±9.1%)
2) 110t2 − 2300t+ 14000 (±0.85%)
3) 4100t− 73000 (±0.75%)
4) 28000

√
t− 75000 (±0.47%)

Russia
(March 04)

1) 5.1e0.22t (±5.8%)
2) 43e0.15t (±1.3%)
3) 190t2 − 14000t+ 29× 104 (±1.0%)

Netherlands
(February 27)

1) 24e0.22t (±2.3%)
2) 27t2 − 640t+ 3600 (±2.6%)
3) 1100t− 24000 (±0.77%)
4) 7600

√
t− 21000 (±0.73%)

China
(January 22)

1) 380e0.40t (±2.2%)
2) 89t2 + 750t− 4100 (±2.8%)
3) 1400t− 34000 (±0.64%)
4) 2200

√
t+ 65000 (±0.36%)

India
(March 04)

1) 17e0.16t (±7.1%)
2) 29t2 − 1400t+ 19000 (±1.1%)
3) 3700t− 19× 104 (±0.54%)

Israel
(March 04)

1) 14e0.23t (±6.0%)
2) 19t2 − 440t− 2500 (±2.5%)
3) 400t− 4800 (±0.6%)
4) 3800

√
t− 12000 (±0.79%)

South Korea
(February 18)

1) 15e0.67t (±2.2%)
2) 9.7t2 + 430t− 3500 (±1.5%)
3) 160t+ 4000 (±0.67%)
4) 880

√
t+ 3600 (±0.085%)

Switzerland
(February 26)

1) 17e0.24t (±4.2%)
2) 31t2 − 440t− 2200 (±5.6%)
3) 1000t− 19000 (±0.47%)
4) 7500

√
t− 27000 (±2.4%)

Japan
(February 15)

1) 58e0.093t (±4.6%)
2) 0.38t3 − 38t2 + 1400t− 16000 (±1.9%)
3) 310t− 9200 (±1.4%)
4) 2100

√
t− 4100 (±0.23%)

Singapore
(February 15)

1) 21e0.08t(±5.6%)
2) 0.4t3 − 32t2 − 440t + 50000 (±1.4%) 3)
680t− 36000 (±0.71%)

Belgium
(February 29)

1) 0.63e0.74t (±18%)
2) 36e0.19t (±7.6%)
3) 1400t− 31000 (±0.8%)
4) 9500

√
t− 26000 (±0.74%)

Australia
(February 19)

1) 4.7e0.15t (±6.1%)
2) 360t− 10000 (±1.3%)
3) 980

√
t− 960 (±1.2%)

Sri Lanka
(March 10)

1) 0.51e0.60t (±4.0%)
2) 6.3t− 1.0 (±3.1%)
3) 18t− 260 (±1.1%)

Hong Kong
(February 15)

1) 49e0.037t (±1.5%)
2) 45t− 10000 (±3.0%)
3) 100

√
t+ 200 (±0.55%)
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Table 2 The best-fit curves along with their relative errors
for the COVID-19 data for the world. The best-fit curves are
shown in Fig. 2. Part 1 of the curve (Fig. 2(a)) is from January
22 to March 01, while Part 2 (Fig. 2(b)) is from March 02 to
May 18. For part 2, t̄ = t − 40 and Ī(t̄) = I(t) − I(t0) =
I(t)− 88000, that is, time is measured from March 02.

Part
(Start Date)

Best-fit functions and errors

Part 1
(January 22)

1) 390e0.40t (±2.3%)
2) 90t2 + 750t− 4100 (±2.7%)
3) 1800t+ 25000 (±0.89%)
4) 13000

√
t+ 6500 (±0.29%)

Part 2
(March 02)

1) 4000e0.23t̄ (±6.9%)
2) 1700t̄2 − 29000t̄+ 95000 (±0.83%)
3) 83000t̄− 18× 105 (±0.56%)

ferent parts of I(t) by employing exponential and poly-

nomial functions. We used Python’s polyfit function to

compute the best-fit curves. These curves are listed in

Table 1 along with the relative errors between the orig-

inal data and the fitted data. However, we exhibit only

the leading power laws of the polynomials in the plots

of the figures.

Initially, all the countries exhibit exponential growth

(I(t) = A exp(βt)), which is expected. It is worth men-

tioning that the I(t) plots for USA, UK, France, Spain,

Germany, Russia, Belgium, and Brazil have two ex-

ponential functions for the fit. For example, the I(t)

curve of UK is described by two exponential functions,

∼ exp(0.26t) and ∼ exp(0.23t). The quantity β is pro-

portional to the growth rate. The value of β varies

for different countries as it depends on factors such as

population density, immunity level of the population,

climate, local policy decisions (social distancing, lock-

downs, testing capacity), etc.

In the exponential regime, the daily infection count

is directly proportional to the cumulative count of cases,

that is, İ ≈ βI. The cumulative case count doubles

in time T = (log 2)/β in this regime, For Italy, β =

0.33, resulting in T ≈ 2 days, which means Italy’s I(t)

doubled every two days in the early phase (February 22

to March 01).

Next, the curves transition to the regimes that are

best described by polynomials and can be approximated

as power laws. In Fig. 1, we report the leading terms

of the best-fit polynomials as power laws (also see Ta-

ble 1). The I(t) curves for South Korea, China, Spain,

Germany, Israel, Netherlands, and Switzerland exhibit

three power law regimes—t2, t, and
√
t—before flat-

tening. Similarly, I(t) for Australia, Belgium and Hong

Kong saturate after t and
√
t regimes. As predicted in

our earlier work [36], countries such as USA, France,

Italy, Spain, and Germany transition to a linear and

then to
√
t regime after going through regimes of t4, or

t3, or t2. These nations are close to flattening their I(t)

curves. UK, Turkey, Israel and Netherlands exhibit sim-

ilar transitions. However, I(t) for countries like Hong

Kong, Sri Lanka, Australia, and Belgium directly tran-

sitioned to the linear regime from an exponential phase.

We make a cautionary remark that the coefficients of

the polynomials depend quite critically on the choice

of endpoints of the fit. Our observations of power-law

growth are consistent with earlier results [39,16,22,5,

25,18,35,2,36].

In Fig. 1, in the exponential regime, the İ(t) curves

(daily counts) are nearly parallel to the I(t) curves. It

means that İ increases exponentially in the beginning,

similar to I(t). Subsequently, the curves transition to

power-law regimes. As discussed by Verma et al. [36],

the power law can be approximated as I(t) ∼ Atn and

İ(t) ∼ I1−1/n, which is slower than İ for the exponen-

tial regime. We also remark that for large n, İ(t) ∼ I,

similar to exponential function.

The linear growth regime has an interesting prop-

erty. In this regime, İ ≈ const., that is, constant daily

infection count. The daily infection count starts to de-

crease after the linear regime; hence linear regime is the

transition point.

We also analyze the data of cumulative infected in-

dividuals in the entire world. In Fig. 2, we plot I(t)

and İ(t) versus time in semi-logy format. Note that

the initial epicenter of the COVID-19 outbreak was

in China, and then it shifted to Europe and then to

USA. Therefore, we divide the plot in two parts. In

the first part [Fig. 2(a)], we illustrate cases that belong

mostly to China. After approximately thirty days of

outbreak (around February 20), I(t) for China starts

to saturate. In Fig. 2(b), we exhibit the Ī(t̄) curve

after t = 41 (March 02) when China had achieved

flattening of the curve. In Fig. 2(b), t̄ = t − 40 and

Ī(t̄) = I(t)−I(t0) = I(t)−88000 due to the coordinate

shifts. Both the plots exhibit exponential and power

law regimes, but Ī(t̄) is yet to flatten (see Table 2). We

hope that there is no third part to this curve, which is

possible if the unaffected countries remain so.

The transition from the exponential to power-law

behaviour is expected from the nature of the I(t) curve.

The I(t) curve is convex during the exponential growth

phase, that is, its center of curvature is upward. How-

ever, the curve must turn concave for it to flatten. This

transformation occurs via a sequence of growth phases:

power-law, linear, square-root, and then flat. The curve

transitions from convex to concave in the linear regime

for which the radius of curvature is infinite. In Sec. 6
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Fig. 2 (color online) For the COVID-19 epidemic, the semi-
logy plots of total infected individuals (I(t)) vs. time (t) (red
curves) for (a) Part 1: from January 22 to March 01 (com-
prising mostly of China), (b) Part 2: from March 02 to May
18 (world other than China). In Part 2, t̄ = t − 40 and
Ī(t̄) = I(t) − I(t0) = I(t) − 88000. The blue curves in the
plot describe the derivatives of I(t). The dotted curves rep-
resent the best-fit curves.

we argue that the power-law behaviour is possibly due

to lockdown and social distancing.

We remark that the death count due to COVID-19

also exhibits similar behaviour as the infection count

I(t). It is expected because a fraction of infected indi-

viduals, unfortunately, die. However, we expect a small

time delay between the death time series and the infec-

tion time series. Some researchers have attempted to fit

the I(t) and death counts with error functions [25,33].

The above analysis shows that we can track the de-

velopment of the epidemic locally in time. The best-fit

curves in particular segments provide the status of the

epidemic. For example, if we have reached the linear

regime, then we are not far from flattening the curve.

Similarly, a
√
t regime indicates that the flattening of

Table 3 For the cumulative infected cases data for MERS,
Ebola, and COVID-19, the best-fit functions and the respec-
tive relative errors for various stages of evolution shown in
Fig. 3.

Epidemic Best fit functions and errors

MERS
tmax = 720

1) 60e0.005t (±3.2%)
2) 0.03t2 − 24t+ 5100 (±3.4%)
3) 1.5t+ 38 (±1.2%)

Ebola
tmax = 360

1) 14e0.03t (±7.5%)
2) 0.7t3−570t2+14×104t−12×106 (±1.4%)
3) 135t− 24000 (±0.71%)
4) 2500

√
t− 24000 (±0.48%)

Covid-19
tmax = 90

See Table 2

the curve has begun. Thus, simple data analytics de-

scribed above has significant predictive power.

In the next section we compare the functional be-

haviour of COVID-19’s I(t) curve with those of other

major epidemics.

3 Comparisonof COVID-19 with other

epidemics

A natural question is whether the epidemic evolution of

COVID-19 differs from the spread of Ebola and MERS

(Middle Eastern Respiratory Syndrome). In this sec-

tion we perform a comparative study of Ebola, MERS,

and Covid-19 epidemics. We digitized data for these

epidemics for their respective time periods: MERS [29]

from May 01, 2013 to April 30, 2015; Ebola [21] from

May 01, 2014 to April 30, 2015; and Covid-19 [37] from

January 22, 2020 to May 18, 2020. In Fig. 3, we plot

I(t) vs. normalized time, t/tmax, in a semi-logy format

for all three epidemics. Here, tmax (see Table 3) is the

time span of the epidemic, except for COVID-19 for

which tmax is taken up to May 18.

In Fig. 3 we present the best-fit curves as dotted

lines. Clearly, the three curves look similar, with regimes

exhibiting exponential, power-law, and linear growth

before flattening. A major difference is that COVID-19

has two subparts, which is essentially due to the spread

of COVID-19 by asymptomatic carriers. As shown in

Table 2 and Fig. 2, the epidemic first spread in China

and then in rest of the world. In contrast, the other two

epidemics, Ebola and MERS, were somewhat confined.

In the next section, we present a model for COVID-

19 whose predictions match several countries.
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Fig. 3 (color online) For the COVID-19, Ebola and, MERS
epidemics, the semi-logy plots of total infected individuals
(I(t)) vs. normalized time (t/tmax). The dotted curves repre-
sent the best-fit curves using the exponential and polynomial
functions. For COVID-19 curve, refer to Fig. 2.

4 SEIR model for COVID-19 epidemic

In Sec. 2, we analyzed the COVID-19 infection data

and observed a power-law growth (followed by a linear

regime near saturation) after an exponential growth. In

this section, we attempt to get some insights about this

transition using SEIR model [4,10,20,17,28]. Note the

other important epidemic models are regression mod-

els [30,12], ARIMA forcasting model [1,3,11], SIR model [15,

32], etc. All these models have been frequently and

successfuly used to analyse the transmission dynam-

ics of COVID-19. For example, Labadin and Hong [17]

used this model to predict the second confirmed case in

Malaysia.

Recently, Peng et al. [27] constructed a generalised

SEIR model for the spread of SARS-Cov-2 virus in

China. López and Rodo [20] modified Peng et al. [27]’s

model to analyze the data of Spain and Italy up to the

end of March. In this section, we will discuss a simpli-

fied version of López and Rodo [20]’s SEIR model and

fit it with the real-time data of USA, Italy, Spain and

Japan till 18th May 2020.

In the model, we assume the disease transmission

to take place only among humans. Further, the natu-

ral birth and death rates are assumed to be negligible.

We divide the total population (N) at a certain place

at time t into seven categories: Susceptible (S(t)), Ex-

posed (E(t)), Infected (I(t)), Recovered (R(t)), Insus-

ceptible (P (t)), Quarantined (Q(t)) and Dead (D(t)).

Here, Q(t) is the number of confirmed infected cases at

time t. The evolution equations of the seven categories

are:

dS(t)

dt
= −βS(t)I(t)

N
− αS(t), (1)

dP (t)

dt
= αS(t), (2)

dE(t)

dt
= β

S(t)I(t)

N
− γE(t), (3)

dI(t)

dt
= γE(t)− δI(t), (4)

dQ(t)

dt
= δI(t)− λ(t)Q(t)− κ(t)Q(t), (5)

dR(t)

dt
= λ(t)Q(t), (6)

dD(t)

dt
= κ(t)Q(t), (7)

where β, α, δ, λ(t), and κ(t) are the infection, protec-

tion, average quarantine, recovery and mortality rates

respectively; and γ−1 is the average latency period for

COVID-19. The protection rate α is governed by the

intensity of contact tracing, lockdown policies, and im-

provement of health facilities. The time-dependent pa-

rameters λ(t) and κ(t) are modeled as follows [20]:

λ(t) = λ0(1− exp(−λ1t)), (8)

κ(t) = κ0exp(−κ1t), (9)

where λ0, κ0, λ1, and κ1 are constants. The functional

forms in Eqs. (8-9) are chosen in such a way that the re-

covery rate saturates and the death rate vanishes with

time. Note that the cumulative number of reported in-

fected cases (denoted by I(t) in Sec. 2) is the sum of

Q(t), R(t), and D(t). For further details, refer to Peng

et al. [27], and Lopez and Rodo [20].

We compare the model predictions [Eqs. (1-9)] with

the available data [37] for USA, Italy, Spain and Japan.

For Spain and Japan, t = 0 is taken to be the starting

date shown in Table 1. For USA and Italy, t = 0 cor-

responds to 29th and 24th February respectively. The

end date for all the four countries is 18th May. The

initial values of Q, R, and D are taken to be the total

active cases, recovered cases and deaths respectively at

t = 0 for each country. The number of initial insuscep-

tible cases (P (t = 0)) is assumed to be zero. We adjust

the parameters {α, β, γ, δ, {λ0, λ1}, {κ0, κ1}}, E(t = 0)

and I(t = 0) such that the relative error between the

model and actual data is minimized. Note that the ini-

tial condition satisfies the relation

S(t = 0) = N − E(t = 0)− I(t = 0)−Q(t = 0)

−R(t = 0)−D(t = 0)− P (t = 0), (10)

where N is the total population of the country.

In Fig. 4, we present the best-fit curves from the

SEIR model along with the actual real-time data. This

model fits well with the data for Italy and Spain. In
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Fig. 4 (color online) For the COVID-19 pandemic, semi-logy plots of total infected individuals (I(t)) vs. time (t) (black
dotted curves) for USA, Italy, Spain and Japan from the available data at worldOmeter [37] till May 18. The red curves are
the best-fit curves using the SEIR model described in Sec. 4.

Table 4 Best-fit numerical values of {α, β, γ, δ, {λ0, λ1}, {κ0, κ1}} of SEIR model for four countries with relative errors between
the best-fit curves and actual data [37]. The best-fit curves are shown in Fig. 4.

Best-fit parameters of SEIR model

Country α β γ δ λ0 λ1 κ0 κ1 Errors

USA 0.027 8.0 0.12 1.6 0.14 0.099 1.9 2.0 15.7%

Italy 0.037 1.3 0.24 0.41 0.85 0.054 0.31 0.045 5.0%

Spain 0.017 1.8 1.1 0.99 1.3 0.059 0.38 0.16 10.3%

Japan 0.02 1.6 0.05 0.28 0.07 0.3 0.34 0.089 17.9%

Table 4 we list the numerical values of the best-fit pa-

rameters and the relative errors between the predictions

and data. Note that for Spain and Italy, López and

Rodo [20] considered natural birth and death rates in

their model and obtained fits for Q, R and D seperately.

In contrast, we stick to the fundamental assumption re-

garding natural birth and death rates of the basic SEIR

model [17] and obtain the fits for Q(t)+R(t)+D(t) till

May 18.

Our best-fit values of parameters for Spain and Italy

are nearly consistent with those of López and Rodo [20].

The model shows that high infection rates (β) and small

average latency periods γ−1 try to push the cumu-

lative number of infected cases (reported) to a large
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saturation value via an exponential growth. On the

other hand, high protection and quarantine rates, α and

δ, slow down the growth and minimize the saturation

level of the cumulative infected (reported) cases. Thus,

the values of the control parameter set {β, γ, α, δ} in

Table 4 determine the nature of the power-law after

the exponential growth. On the other hand, the lin-

ear regime (for Italy, Spain) near the saturation is de-

termined well by the removal rate set {λ0, λ1, κ0, κ1}.
Thus, the present model is consistent with the results

presented in Section. 2.

In the next section, we will present another model

which is based on delayed differential equations.

5 Model based on delayed-differential equations

In this section we consider a class of models based on

delay differential equations (DDE), which are different

from SEIR model. Here, the equations often look sim-

pler than their SEIR counterparts since delay can be

used to account for multiple features without increas-

ing the number of variables. The flip side, however, is

that delays can be analytically intractable.

In this section, we focus on one particular delayed

model [34], which uses delays to account for the pre-

symptomatic period and the infection period. This model

has been used to track the evolution of the epidemic,

especially in the post-linear regime. It describes a po-

tential new route to the end of the pandemic through

a combination of social distancing, sanitization, con-

tact tracing and preventive testing. In the controlled

endgame phase of the epidemic, which we call self-burnout,

we have a slightly different equation. In this phase,

there is extensive enforcement of separation minima

(a term we prefer to social distancing as it does not

carry connotations of emotional isolation) so the rate

of new cases does not depend on the number of healthy

and susceptible people at large (i.e. not in quarantine).

Rather, we assume that each sick person spreads the

disease at a constant rate m0. Under these conditions,

the dynamic model for the spread of cases (y, which is

same as I(t)) is

dy

dt
= m0[y(t)− (1− µ3) y(t− τ2/2)

− (1− µ1)µ3y(t− τ2)− µ1µ3y(t− τ1)], (11)

where µ1, µ2, µ3, τ1, τ2 are parameter. In our model, the

contact tracing manages to capture a fraction 1−µ3 of

all the sick patients and places them into quarantine.

A solution to the above equation is y = const. It

has been shown in [34] that this solution is stable if

and only if

m0

(
1 + µ3 − 2µ1µ3

2
τ2 + µ1µ3τ1

)
< 1 (12)

This identifies a maximum value of m0 for which the

solution is stable, i.e., the epidemic gets over in time.

For the plausible parameter values τ1 = 7, τ2 = 3, µ1 =

1/5 and µ3 = 1/2, the critical value of m0 turns out

to be 20/53. Here we assume that the test results are

instantaneous due to high testing capacity present in

the region.
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Fig. 5 (color online) Simulation of the DDE-based model
(Eq. (11)) with m0 being (a) 70%, (b) 80%, (c) 90% of the
critical value, as explained in the text.

We perform simulation runs of Eq. (11) with the

above parameter values and m0 having the values 70,

80 and 90 percent of the critical limit. We seed the

equation with the linear function y = 1000t for the first

ten days. We find a considerable region thereafter where

the case histories show a
√
t profile before saturating.
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Fig. 6 (color online) For the COVID-19 pandemic, semi-logy
plots of total infected individuals (I(t)) vs. time (t) (black
dotted curves) for South Korea and Austria from the available
data at worldOmeter [37]. The red curves are the best-fit
curves obtained using the DDE-based model including self-
burnout (see Sec. 5).

The errors between the observed data and the best-fit

curves are less than 1 percent in each case. This explains

why the countries which are achieving saturation are

showing a pronounced
√
t phase after the linear phase.

To further bolster the validity of our model, we con-

sider two countries (South Korea and Austria) which

have shown a very good linear region followed by satu-

ration. South Korea showed linear regime from March

28 to April 04 (with 9478 and 10156 cases respectively),

after which it enters the burnout phase. Using this as

the seeding data and taking the parameter values men-

tioned above, we find the best fit for the next 20 days

for m0 equal to 77 percent of the critical. The error be-

tween the best-curve and the data is 0.34 percent. Note

that Shayak and Rand [34] has found an m0 of 75 and

not 77 percent of critical, because the fit was upto a

smaller duration.

Austria showed linear regime from March 28 to April

01 (with 6250 and 10711 cases respectively) before en-

tering self-burnout phase. We find the best fit for m0 to

be 79 percent of the critical. The error is 2.6 percent.

However, the actual data for the 8th to the 15th day

appears to be too low—the curve has a convex profile

which is probably unrealistic. If we consider the error

from the 16th to the 30th day then we find a value

of 1.1 percent only. We present these best-fit curves

in Fig. 6. Other regions which are in the self-burnout

phase are Vietnam, Australia, New Zealand, and Goa,

Kerala and Odisha in India. We have chosen South Ko-

rea and Austria since their data shows the smoothest

profile on account of high testing capacity.

Both SEIR and the DDE models describe the evolu-

tion of COVID-19 epidemic quite well for many coun-

tries. A detailed comparison between the two models

will be performed in future. Also, we plan to employ

the two models to understand the epidemic evolution

for many nations.

6 Discussions and Conclusions

COVID-19 pandemic involves many factors, for exam-

ple, asymptomatic carriers, lockdown, social distancing,

quarantine, etc. Considering these complex issues, we

focus on data analysis. In particular, we analyze the

real-time infection data of COVID-19 epidemic for 21

nations up to May 18, 2020. Our analysis shows that

many nations are close to flattening the epidemic curve.

A key feature of our analysis is the emergence of

power-law behavior after an exponential growth, which

has also been observed by other researchers [39,16,22,5,

25,18,35,2]. The exponential growth is easily explained

using İ ∝ βI relation, which arises due to the spread

by contact. For power-law growth, I(t) ∼ tn, the above

relation is modified to İ ∼ I1−1/n. The suppression

of I−1/n in İ could be attributed to lockdowns and

social distancing etc. A careful analysis of the epidemic

models should yield this feature. Interestingly, Ebola

and MERS also exhibit similar behavior. This generic

feature is very useful for the forecast of the epidemic

evolution.

Note that the I(t) curve needs to turn from convex

(during the exponential growth) to concave for flatten-

ing. Hence, a transition from exponential growth to a

power-law growth is expected. The lockdowns and so-

cial distancing are likely to make the transition ear-

lier, thus suppressing the exponential growth to some

degree. Earlier, Verma et al. [36] had conjectured that

the power-law growth might occur due to asymptomatic

carriers and/or community spread. This conjecture needs

a closer examination.
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In this paper, we only studied the infection counts.

However, it is evident that during the growth phase,

the active cases and death counts, would follow similar

pattern as I(t). The total death count too flattens along

with the infection count, but the active cases decreases

with time during the saturation.

Prakash et al. [31] studied the phase space portraits,

that is, İ vs. I plots. They observed the phase-space

curves to be linear. This is natural for the exponential

growth (İ ∝ βI), as well as for the power-law growth

with large exponent n because İ ∼ I1−1/n. In another

interesting analysis of COVID-19 epidemic, Schüttler

et al. [33] and Marsland and Mehta [25] argued that

I(t) or total death count could be modelled using error

function. Using this result, we may be able to predict

the asymptotic behavior of I(t) that may yield valuable

clues regarding the extent and duration of the epidemic.

Epidemic spread has similarities with rumor spread

and the growth of a network [10,26]. A comparison of

the power-law growth in these systems will yield fruitful

results for the epidemic forecast.

In summary, COVID-19 epidemic data reveal in-

teresting properties that can be used for its forecast.

The
√
t dependence of total infections after the linear

regime is a striking feature that might have connec-

tions with other aspects of physics and mathematics.

We leave these considerations for future studies.
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M.: Covid-19 Predictions Using a Gauss Model, Based
on Data from April 2. preprints.org (2020)

34. Shayak, B., Rand, R.H.: Self-burnout - a new
path to the end of covid-19. medrxiv.org
(doi:10.1101/2020.04.17.20069443) (2020)

35. Singer, H.M.: The COVID-19 pandemic: growth pat-
terns, power law scaling, and saturation. arXiv p.
arXiv:2004.03859 (2020)

36. Verma, M.K., Asad, A., Chatterjee, S.: COVID-19 epi-
demic: Power law spread and flattening of the curve.
medrxiv.org (DOI:10.1101/2020.04.02.20051680) (2020)

37. WorldOMeter: URL https://www.worldometers.info/

coronavirus/

38. Wu, K., Darcet, D., Wang, Q., Sornette, D.: Generalized
logistic growth modeling of the COVID-19 outbreak in 29
provinces in China and in the rest of the world. arXiv.org
(2020)

39. Ziff, A.L., Ziff, R.M.: Fractal kinetics of COVID-19 pan-
demic. medrxiv.org (DOI: 10.1101/2020.02.16.20023820)
(2020)


